手机浏览器扫描二维码访问
林朝夕:“……”
——
那天晚上,林朝夕破天荒押着老林,要跟在他身边学习。
距她离开这个世界还有100天。
在这100天内,老林不仅要完成整个错误的论证,还要推翻自己的论证,并且要在此之上有全新的发现。
就算她有草莓世界老林的全部研究结果,但也不能把东西直接抄下来交给老林。
究竟要怎么办,她必须在老林身边,试探世界规则、找到正确方法,和解题一样。
老林对于她跟着倒没什么意见,当天晚上,林朝夕就把自己的回家作业搬进老林书房。
不过,老林同志对她的专业素养表示了怀疑:“你图论看了几页?”
林朝夕直接起身,走到老林的书架上,抽出第一版的《图论及其应用》,说:“都看完了。”
“嚯,了不起。”老林同志给她点了个赞,“书后的习题呢?”
“只做了一半,有很多不懂的。”
“那爸爸给你讲讲?”
“不行,你忙你的,我有不会的自己学,等你空了你再教我。”林朝夕很干脆拒绝,抱着书坐到自己的小桌上。
如果打开百度百科搜索图论,第一句话大概是这样的
——众所周知,图论起源于一个非常经典的问题,柯尼斯堡(konigsberg)问题。
柯尼斯堡这个词当然不那么“众所周知”,但如果换成它的另一个译名——七桥问题。就变成很多学生在小学奥数中都接触过的内容了。
一般它出现在小学奥数书“小知识”栏目中,配图是被一条河分隔开的a、b两地,河上有c、d两座小岛,有7座桥梁把岛屿同陆地联系起来。
问题如下:一个人要如何从a、b、c、d中任一块出发,恰好通过每座桥一次,再回到出发点?
当时有很多人都尝试过,发现似乎没办法做到这点。但这就是数学,无论可能或者不可能,都需要确切的证明。
于是,图论诞生了。
1736年,欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文。将岛与河岸抽象为顶点,桥变成连接顶点的边,证明一次走完7桥且不重复这是不可能的。
在完成解答的同时,欧拉开创了数学的一个新的分支——图论与几何拓扑。
这就是数学,你永远不知道,在解决一个看似无意义的问题背后,会藏着有怎样的未来。
林朝夕又翻完一章的内容,心中感慨。
其实她深知,她在这个领域更深入的地方,帮不上什么忙。但对她来说,她的命运好像不由自主地与这个问题纠缠在一起。
多了解一点,深入地了解一点,或许能在某一个时刻,对老林有所帮助。
书桌前的老林同志还在埋头,安静作着他自己的演算。
这天晚上的学习……
林朝夕并没对老林有什么帮助,不仅如此,老林同志还看了下她的习题本,抽空给她讲了个证明。
他们又聊了会儿七桥问题,老林说正好,他小学奥数班正好要上到这个内容,让她周末给小朋友们讲讲。
于是林朝夕莫名其妙开始想起了这节课要怎么上。
红碎因宵(伪骨科H) 我的生活有旁白 (人外)论活化石的新生活 养妖閣 和得罪的霸总上恋综后 渡我(1V1 双C) 他曾踏光而来 快穿之大肚人生 用霸总光环拯救双性男主 恶果 (年上 伪叔侄) 我真没想过赚这么多钱 阶级跨越(NPH) 重生之全职业巨星 皇帝重生后只想当咸鱼 归来[快穿] 完结+番外 当年铁甲动帝王(重生) 糖炒栗子 对不起,我的爱人是祖国[快穿] 但求其爱(年下1V1) 侠客行(np)
本书又名小师叔明明超强却实在太宅了武学奇才小师叔宅着宅着就成了天下第一吕纯良很受伤。穿越仙武世界,天生唬人的气质拿捏得死死的。天赋...
剑未佩妥,出门已是江湖。千帆过尽,归来仍是少年。生逢乱世,战火席卷天下,生灵涂炭,人命犹如草芥。及冠之时,仗义行侠四海,长剑在手,劈开一挂清明。十年饮冰,难凉热血。披荆斩棘,愿开太平。如果您喜欢太平客栈,别忘记分享给朋友...
关于从野怪开始进化升级量子转移网游九重天域第一重天域震撼开启,上线一天便迅速火爆全球。陆晨意外失去人物角色,开始从一级豺狼人进化升级?击杀更多物种,获得新天赋!获得天赋碎片,提升天赋等级!前缀品质提升,普通的,强壮的,特别强壮的基础属性一路狂飙!玩家A那野怪的前缀有两百多米那么长?!玩家B那野怪灭了我们八家公会!简直不是人?!玩家C尼玛,那家伙又来屠城了,还让人活吗?!陆晨全球的小朋友们,你们是不是有很...
‘悲惨’的事实告诉我们,穿越是个技术活。而显然叶枣技术一般。被自家便宜舅舅骗进人家府里做小妾也就算了,为毛是四爷府上? 还是个侍妾,这怎么混?起点太低,出身太差,筹码太少!大BOSS血太厚,小BOSS个...
正所谓天有不测风云,人有旦夕祸福。贺一凡对这句话的理解是越来越深刻了,自己不就是喝多了给重金求子的广告打了一个电话吗,结果就被女鬼纠缠,差点翘了辫子,从此走上了阴阳路又因为想抓个鬼小弟,得罪了...
一手夺命医术,一身绝世功法,天才少年自深山中而来。生性腼腆的他,不怕和死亡对决。为寻找师姐,保护各路美女,一路杀伐果断纵横都市。...